calculo temario - "UNIDAD V" TEOREMA PARA LA SOLUCION DE INTEGRALES
   
 
  TEMARIO
  "UNIDAD I" INTRODUCCION AL CALCULO
  1.1 CLASIFIOCACION Y PROPIEDADES DE LOS NUMEROS REALES
  1.2 LA RECTA NUMERICA Y INTERVALO
  1.3 VALOR ABSOLUTO
  1.4 DESIGUALDAD
  1.5 FUNCIONES ALGEBRAICAS Y SUS GRAFICAS
  1.6 FUNCIONES TRIGONOMETRICAS Y SUS GRAFICAS
  "UNIDAD II" LIMITES Y CONTUNUIDAD
  2.1 DEFINICION DE LIMITE
  2.2 TEOREMAS DE LIMITES
  2.3 LIMITES DE FUNCIONES ALGEBRAICAS Y TRASCENDENTES (TRIGONOMETRICAS)
  - 2.4 FUNCIONES CONTINUAS
  "UNIDAD lll " DERIVADA
  3.1 DEFINICION DE LA DERIVADA Y SU INTERPRETACION NUMERICA
  3.2 REGLAS PARA CALCULAR LA DERIVADA
  3.3 CALCULO DE DERIVADAS ALGEBRAICAS POR FORMULA
  3.4 DERIVADAS DE FUNCIONES TRASCENDENTES
  3.5 INCREMENTOS Y DIFERENCIALES
  3.6 REGLA DE LA CADENA
  "UNIDAD IV" APLICACIONES DE LA DERIVADA
  4.1Aplicaciones de la derivada
  4.2 ECUACIONES DE LA RECTA TANGENTE Y LA NORMAL
  4.3 PUNTOS MAXIMOS Y MINIMOS DE FUNCIONES
  4.4 CRITERIOS DE LA PRIMERA Y SEGUNDA DERIVADA
  4.5 Calculo de los puntos de intersección de una función.
  4.6 Ejercicios de aplicación.
  "UNIDAD V" TEOREMA PARA LA SOLUCION DE INTEGRALES
  5.1 Anti derivada.
  5.2 Definición de la integral definida.
  5.3 Propiedades de la integral definida.
  5.4 Teorema del valor medio para la integral
  5.5 TEOREMA FUNDAMENTAL DE CALCULO
  "UNIDAD VI" TECNICAS DE INVESTIGACION
  6.1 Integración por partes.
  6.2 Integrales trigonométricas
  6.3 Sustitución trigonométrica.
  6.4 Fracciones parciales.
  6.5 EJERCICIOS DE APLICACION
 

Teorema para la solución de integrales



La integración es el proceso inverso a la derivación. Esto quiere decir:

Sea y = f(x) una función. Sea y' = g(x) la derivada de y = f(x). Si calculamos la integral de la función g(x), obtendremos como resultado f(x).

Sin embargo, esta definición de integral es poco 'enrrollada' (esto quiere decir que nos hemos quedado como estábamos). Se comprende mejor el concepto de integral sabiendo que surgió (fue descubierto por Leibnitz y Newton) para resolver problemas de medidas (medir longitudes de curvas, superficies, volúmenes).

La integración es una suma (el signo de integral surgió como deformación del signo sumatorio).

Supongamos que nos piden que calculemos la superficie limitada entre la curva de ecuación y = f(x), el eje x y las rectas x = 3 y x = 5. Si descomponemos esa superficie en rectángulos de base en el eje x y altura y, podemos aproximar el área por la suma de las áreas de los rectángulos. Si hacemos los rectángulos muy estrechos (de anchura dx) el área sería la suma de las áreas de esos rectángulos, o sea f(x).dx (dx sería la base y f(x) es la altura del rectángulo en el punto x).



REGRESAR A TEMARIO
Hoy habia 28 visitantes (37 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis