calculo temario - 1.3 VALOR ABSOLUTO
   
 
  TEMARIO
  "UNIDAD I" INTRODUCCION AL CALCULO
  1.1 CLASIFIOCACION Y PROPIEDADES DE LOS NUMEROS REALES
  1.2 LA RECTA NUMERICA Y INTERVALO
  1.3 VALOR ABSOLUTO
  1.4 DESIGUALDAD
  1.5 FUNCIONES ALGEBRAICAS Y SUS GRAFICAS
  1.6 FUNCIONES TRIGONOMETRICAS Y SUS GRAFICAS
  "UNIDAD II" LIMITES Y CONTUNUIDAD
  2.1 DEFINICION DE LIMITE
  2.2 TEOREMAS DE LIMITES
  2.3 LIMITES DE FUNCIONES ALGEBRAICAS Y TRASCENDENTES (TRIGONOMETRICAS)
  - 2.4 FUNCIONES CONTINUAS
  "UNIDAD lll " DERIVADA
  3.1 DEFINICION DE LA DERIVADA Y SU INTERPRETACION NUMERICA
  3.2 REGLAS PARA CALCULAR LA DERIVADA
  3.3 CALCULO DE DERIVADAS ALGEBRAICAS POR FORMULA
  3.4 DERIVADAS DE FUNCIONES TRASCENDENTES
  3.5 INCREMENTOS Y DIFERENCIALES
  3.6 REGLA DE LA CADENA
  "UNIDAD IV" APLICACIONES DE LA DERIVADA
  4.1Aplicaciones de la derivada
  4.2 ECUACIONES DE LA RECTA TANGENTE Y LA NORMAL
  4.3 PUNTOS MAXIMOS Y MINIMOS DE FUNCIONES
  4.4 CRITERIOS DE LA PRIMERA Y SEGUNDA DERIVADA
  4.5 Calculo de los puntos de intersección de una función.
  4.6 Ejercicios de aplicación.
  "UNIDAD V" TEOREMA PARA LA SOLUCION DE INTEGRALES
  5.1 Anti derivada.
  5.2 Definición de la integral definida.
  5.3 Propiedades de la integral definida.
  5.4 Teorema del valor medio para la integral
  5.5 TEOREMA FUNDAMENTAL DE CALCULO
  "UNIDAD VI" TECNICAS DE INVESTIGACION
  6.1 Integración por partes.
  6.2 Integrales trigonométricas
  6.3 Sustitución trigonométrica.
  6.4 Fracciones parciales.
  6.5 EJERCICIOS DE APLICACION

  Identidad de indiscernibles
|a-b| le |a-c| + |c-b| Desigualdad triangular
|a-b| ge ||a| - |b|| (equivalente a la propiedad aditiva)
| frac {a}{b}| =  frac {|a|}{|b|} (si  b ne 0) Preservación de la división (equivalente a la propiedad multiplicativa)

Otras dos útiles inecuaciones son:

  • |a| le b iff -b le a le b
  • |a| ge b iff a ge b vee b le -a

Estas últimas son de gran utilidad para la resolución de inecuaciones, como por ejemplo:

|x-3| le 9 iff -9 le x-3 le 9
  iff -6 le x le 12

Valor absoluto de un número complejo

El valor absoluto de un número complejo es la distancia desde al origen. Aquí vemos que y su conjugado tienen el mismo valor absoluto.

Como los números complejos no conforman un conjunto ordenado en el sentido de los reales, la generalización del concepto no es directa, sino que requiere de la siguiente identidad, que proporciona una definición alternativa y equivalente para el valor absoluto:

|a| = sqrt{a^2}

De esta manera, dado cualquier número complejo de la forma

z = x + iy,

con x e y números reales, el valor absoluto o módulo de z está definido formalmente por:

|z| = sqrt{x^2 + y^2}

Como los números complejos son una generalización de los números reales, es lógico que podamos representar a estos últimos también de esta forma:

 |x + i0| = sqrt{x^2 + 0^2} = sqrt{x^2} = |x|

De modo similar a la interpretación geométrica del valor absoluto para los números reales, se desprende del Teorema de Pitágoras que el valor absoluto de un número complejo corresponde a la distancia en el plano complejo de ese número hasta el origen, y más en general, que el valor absoluto de la diferencia de dos números complejos es igual a la distancia entre ellos.

Propiedades

El valor absoluto de los complejos comparte todas las propiedades vistas anteriormente para los números reales. Además, si

 z = x + i y = r (cos phi + i sin phi ) ,

y

bar{z} = x - iy 
es el conjugado de z, entonces se verifica que:
|z| = r,
|z| = |bar{z}|
|z| = sqrt{zbar{z}} 

Esta última fórmula es la versión compleja de la primera identidad en los reales que mencionamos en esta sección.

Como los números reales positivos forman un subgrupo de los números complejos bajo el operador de multiplicación, podemos pensar en el valor absoluto como un endomorfismo del grupo multiplicativo de los números complejos.





Regresar a TEMARIO

Hoy habia 7 visitantes (13 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis