calculo temario - 2.3 LIMITES DE FUNCIONES ALGEBRAICAS Y TRASCENDENTES (TRIGONOMETRICAS)
   
 
  TEMARIO
  "UNIDAD I" INTRODUCCION AL CALCULO
  1.1 CLASIFIOCACION Y PROPIEDADES DE LOS NUMEROS REALES
  1.2 LA RECTA NUMERICA Y INTERVALO
  1.3 VALOR ABSOLUTO
  1.4 DESIGUALDAD
  1.5 FUNCIONES ALGEBRAICAS Y SUS GRAFICAS
  1.6 FUNCIONES TRIGONOMETRICAS Y SUS GRAFICAS
  "UNIDAD II" LIMITES Y CONTUNUIDAD
  2.1 DEFINICION DE LIMITE
  2.2 TEOREMAS DE LIMITES
  2.3 LIMITES DE FUNCIONES ALGEBRAICAS Y TRASCENDENTES (TRIGONOMETRICAS)
  - 2.4 FUNCIONES CONTINUAS
  "UNIDAD lll " DERIVADA
  3.1 DEFINICION DE LA DERIVADA Y SU INTERPRETACION NUMERICA
  3.2 REGLAS PARA CALCULAR LA DERIVADA
  3.3 CALCULO DE DERIVADAS ALGEBRAICAS POR FORMULA
  3.4 DERIVADAS DE FUNCIONES TRASCENDENTES
  3.5 INCREMENTOS Y DIFERENCIALES
  3.6 REGLA DE LA CADENA
  "UNIDAD IV" APLICACIONES DE LA DERIVADA
  4.1Aplicaciones de la derivada
  4.2 ECUACIONES DE LA RECTA TANGENTE Y LA NORMAL
  4.3 PUNTOS MAXIMOS Y MINIMOS DE FUNCIONES
  4.4 CRITERIOS DE LA PRIMERA Y SEGUNDA DERIVADA
  4.5 Calculo de los puntos de intersección de una función.
  4.6 Ejercicios de aplicación.
  "UNIDAD V" TEOREMA PARA LA SOLUCION DE INTEGRALES
  5.1 Anti derivada.
  5.2 Definición de la integral definida.
  5.3 Propiedades de la integral definida.
  5.4 Teorema del valor medio para la integral
  5.5 TEOREMA FUNDAMENTAL DE CALCULO
  "UNIDAD VI" TECNICAS DE INVESTIGACION
  6.1 Integración por partes.
  6.2 Integrales trigonométricas
  6.3 Sustitución trigonométrica.
  6.4 Fracciones parciales.
  6.5 EJERCICIOS DE APLICACION
 

En matemáticas, una función algebraica es una función que satisface una ecuación polinómica cuyos coeficientes son a su vez polinomios. Por ejemplo, una función algebraica de una variable x es una solución y a la ecuación

a_n(x)y^n+a_{n-1}(x)y^{n-1}+cdots+a_0(x)=0 
donde los coeficientes ai(x) son funciones polinómicas de x. Una función que no es algebraica es denominada una función trascendente.

En términos más precisos, una función algebraica puede no ser estrictamente una función, por lo menos no en el sentido convencional. Por ejemplo sea la ecuación de una circunferencia:

y^2+x^2=1.,
La misma determina y, excepto por su signo:
y=pm sqrt{1-x^2}.,
Sin embargo, se considera que ambas ramas pertenecen a la "función" determinada por la ecuación polinómica.

Una función algebraica de n variables es definida en forma similar a la función y que es solución de la ecuación polinómica en n + 1 variables:

p(y,x_1,x_2,dots,x_n)=0.,
Normalmente se supone que p debe ser un polinomio irreducible. La existencia de una función algebraica es asegurada por el teorema de la función implícita.

 

 

Formalmente, una función algebraica de n variables en el cuerpo K es un elemento del cierre algebraico del cuerpo de las funciones racionales K(x1,...,xn). Para poder comprender a las funciones algebraicas como funciones, es necesario incorporar ideas relativas a las superficies de Riemann o en un ámbito más general sobre variedades algebraicas, y teoría de haces.

 

Función trascendente

 Una función trascendente es una función que no puede ser representada por una ecuación polinómica cuyos coeficientes son a su vez polinomios, en comparación una función algebraica sí satisface tal tipo de ecuación. Es decir una función de una variable es trascendente si es independiente en un sentido algebraico de dicha variable.

Funciones algebraicas y trascendentes

El logaritmo y la función exponencial son ejemplos de funciones trascendentes. El término función trascendente a menudo es utilizado para describir a las funciones trigonométricas, o sea, seno, coseno, tangente, cotangente, secante, y cosecante.

Una función que no es trascendente se dice que es algebraica. Ejemplos de funciones algebraicas son las funciones racionales y la función raíz cuadrada.

La operación de calcular la función primitiva (o integral indefinida) de una función algebraica es una fuente de funciones trascendentes. Por ejemplo, la función logaritmo surgió a partir de la función recíproca en un intento para calcular el área de un sector hiperbólico. Por lo tanto el ángulo hiperbólico y las funciones hiperbólicas senh, cosh, y tanh son todas funciones trascendentes.

Hoy habia 15 visitantes (23 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis